
 

  

SECURE SOFTWARE 

DESIGN – FINAL PAPER 

CSOL 560.FINAL PAPER. CHAD NELLEY 

Chad Nelley 
Nelley.chad@gmail.com; chad@nelleyconsulting.com 

Abstract 
An examination of OpenSSL vulnerabilities, testing methodologies and a look at 

LibreSSL as an alternative to OpenSSL. 



 

1 

CHAD NELLEY 

FINAL PAPER 

CSOL560 – Secure Software Design 

OVERVIEW & INTRODUCTION 

 

In this paper I will summarize 4 OpenSSL vulnerabilities, examine the merits of LibreSSL as a 

potential alternative to OpenSSL and examine a proper testing methodology to be applied to 

Cybersecurity software development best practices. 

The Objective – Analysis of OpenSSL and a review of Secure Testing Modalities 

Over the years much has been documented and explored with regards to the inherent flaws of 

the OpenSSL platform. This paper will not be revolutionary in its concepts, hypotheses or 

framing of the current challenges associated with the OpenSSL framework but rather will seek 

to briefly explain 4 vulnerabilities and how current testing methodologies applied to the go-

forward development of OpenSSL or any other platform, for that matter, can help to reduce risk 

and promote a more secure approach to systems and architectures that are handling sensitive 

data and information. 

Deliverables for this Paper as defined in the Assignment: 

 4 Specific Vulnerabilities that have impacted OpenSSL 
 A review of Testing methodologies & products 
 A look at LibreSSL as an alternative application to OpenSSL 

 

DELIVERABLES: 

Four Specific Vulnerabilities in OpenSSL 

For purposes of this course and final paper, I chose 4 specific vulnerabilities from the OpenSSL 

library of known bugs. Two mainstream, well documented, issues and two lesser known and 

lesser documented know issues. 

Vulnerability 1: DROWN 

DROWN is a serious vulnerability that affects HTTPS and other services that rely on SSL and 
TLS, some of the essential cryptographic protocols for Internet security. These protocols allow 
everyone on the Internet to browse the web, use email, shop online, and send instant messages 
without third-parties being able to read the communication. 



 

2 

DROWN allows attackers to break the encryption and read or steal sensitive communications, 
including passwords, credit card numbers, trade secrets, or financial data. Our measurements 
indicate 33% of all HTTPS servers are vulnerable to the attack. 

DROWN enables attackers to intervene in any communication between users and the server. 
This typically includes, but is not limited to, usernames and passwords, credit card numbers, 
emails, instant messages, and sensitive documents. Under some common scenarios, an 
attacker can also impersonate a secure website and intercept or change the content the user 
sees. 

Websites, mail servers, and other TLS-dependent services are at risk for the DROWN attack. It 
is thought that even after the fix was announced and information for patching was made 
available, that nearly 15% of the top one million domains are still vulnerable to a DROWN 
attack. 

Below is an illustration on how a DROWN attack works: 

 

A server is vulnerable to DROWN if: 

 It allows SSLv2 connections. This is surprisingly common, due to misconfiguration and 
inappropriate default settings. Our measurements show that 17% of HTTPS servers still 
allow SSLv2 connections. 

or: 



 

3 

 Its private key is used on any other server that allows SSLv2 connections, even for 
another protocol. Many companies reuse the same certificate and key on their web and 
email servers, for instance. In this case, if the email server supports SSLv2 and the web 
server does not, an attacker can take advantage of the email server to break TLS 
connections to the web server. When taking key reuse into account, an additional 16% 
of HTTPS servers are vulnerable, putting 33% of HTTPS servers at risk. 

So, how is OpenSSL affected by DROWN?  

OpenSSL: OpenSSL is a cryptographic library used in many server products. For users of 
OpenSSL, the easiest and recommended solution is to upgrade to a recent OpenSSL version. 
OpenSSL 1.0.2 users should upgrade to 1.0.2g. OpenSSL 1.0.1 users should upgrade to 
1.0.1s. Users of older OpenSSL versions should upgrade to either one of these versions. 

The below diagram illustrates how a server becomes vulnerable to a DROWN attack: 

 

 

DROWN stands for Decrypting RSA with Obsolete and Weakened eNcryption. 

DROWN is made worse by two additional OpenSSL implementation vulnerabilities. CVE-2015-
3197, which affected OpenSSL versions prior to 1.0.2f and 1.0.1r, allows a DROWN attacker to 
connect to the server with disabled SSLv2 ciphersuites, provided that support for SSLv2 itself is 
enabled. CVE-2016-0703, which affected OpenSSL versions prior to 1.0.2a, 1.0.1m, 1.0.0r, and 
0.9.8zf, greatly reduces the time and cost of carrying out the DROWN attack. I will attempt to 
cover these two vulnerabilities of OpenSSL next, but caveat as to say there is far less 
information available on each. 

 

 

https://www.openssl.org/news/secadv/20160128.txt
https://www.openssl.org/news/secadv/20160128.txt
https://www.openssl.org/news/secadv/20160301.txt


 

4 

Vulnerability 2: SSLv2 doesn't block disabled ciphers (CVE-2015-3197) 
 
Although the severity rating on this issue is touted as low, it is a key precursor component issue 
for the above DROWN type of attack. This vulnerability can best be described as: 
 
A malicious client can negotiate SSLv2 ciphers that have been disabled on the server and 
complete SSLv2 handshakes even if all SSLv2 ciphers have been disabled, provided that the 
SSLv2 protocol was not also disabled via SSL_OP_NO_SSLv2. 
 
This issue affects OpenSSL versions 1.0.2 and 1.0.1. 
 
OpenSSL 1.0.2 users should upgrade to 1.0.2f 
OpenSSL 1.0.1 users should upgrade to 1.0.1r 
 
This issue was reported to OpenSSL on 26th December 2015 by Nimrod Aviram and Sebastian 
Schinzel. The fix was developed by Nimrod Aviram with further development by Viktor Dukhovni 
of the OpenSSL development team. 
 
 
An update on DHE man-in-the-middle protection (Logjam). A previously published vulnerability 
in the TLS protocol allows a man-in-the-middle attacker to downgrade vulnerable TLS 
connections using ephemeral Diffie-Hellman key exchange to 512-bit export-grade 
cryptography. This vulnerability is known as Logjam CVE-2015-4000). OpenSSL added Logjam 
mitigation for TLS clients by rejecting handshakes with DH parameters shorter than 768 bits in 
releases 1.0.2b and 1.0.1n. 
 
This limit has been increased to 1024 bits in this release, to offer stronger cryptographic 
assurance for all TLS connections using ephemeral Diffie-Hellman key exchange. 
 
OpenSSL 1.0.2 users should upgrade to 1.0.2f 
OpenSSL 1.0.1 users should upgrade to 1.0.1r 
 
The fix was developed by Kurt Roeckx of the OpenSSL development team. 
 
 
Vulnerability 3: Divide-and-conquer session key recovery in SSLv2 (CVE-2016-0703) 
 
The divide-and-conquer session key recovery in SSLv2 also referred to as CVE-2016-0703 has 
a high severity rating and is another precursor exploit that will help enable a DROWN attack. 
Details of this vulnerability are provided below: 
 
This issue only affected versions of OpenSSL prior to March 19th 2015 at which 
time the code was refactored to address vulnerability CVE-2015-0293. 
 
s2_srvr.c did not enforce that clear-key-length is 0 for non-export ciphers. If 
clear-key bytes are present for these ciphers, they *displace* encrypted-key 
bytes. This leads to an efficient divide-and-conquer key recovery attack: if an 
eavesdropper has intercepted an SSLv2 handshake, they can use the server as an 
oracle to determine the SSLv2 master-key, using only 16 connections to the 
server and negligible computation. 
 



 

5 

More importantly, this leads to a more efficient version of DROWN that is 
effective against non-export ciphersuites, and requires no significant 
computation. 
 
This issue affected OpenSSL versions 1.0.2, 1.0.1l, 1.0.0q, 0.9.8ze and all 
earlier versions.  It was fixed in OpenSSL 1.0.2a, 1.0.1m, 1.0.0r and 0.9.8zf 
(released March 19th 2015). 
 
This issue was reported to OpenSSL on February 10th 2016 by David Adrian and J. 
Alex Halderman of the University of Michigan.  The underlying defect had by 
then already been fixed by Emilia Käsper of OpenSSL on March 4th 2015.  The fix 
for this issue can be identified by commits ae50d827 (1.0.2a), cd56a08d 
(1.0.1m), 1a08063 (1.0.0r) and 65c588c (0.9.8zf). 
 
 
Vulnerability 4: Heartbleed 
 
While there is a tremendous amount of information and data available on Heartbleed, for 

purposes of this paper, I have narrowed the explanation down to a streamlined version of facts 

with a couple of well known graphics as ride along content for illustration and understanding. 

Officially referred to as CVE-2014-0160, the Heartbleed Bug is a serious vulnerability in the 
popular OpenSSL cryptographic software library. This weakness allows stealing the information 
protected, under normal conditions, by the SSL/TLS encryption used to secure the Internet. 
SSL/TLS provides communication security and privacy over the Internet for applications such as 
web, email, instant messaging (IM) and some virtual private networks (VPNs). 

The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected 
by the vulnerable versions of the OpenSSL software. This compromises the secret keys used to 
identify the service providers and to encrypt the traffic, the names and passwords of the users 
and the actual content. This allows attackers to eavesdrop on communications, steal data 
directly from the services and users and to impersonate services and users. 

How Heartbleed works: 

The RFC 6520 Heartbeat Extension tests TLS/DTLS secure communication links by allowing a 
computer at one end of a connection to send a Heartbeat Request message, consisting of a 
payload, typically a text string, along with the payload's length as a 16-bit integer. The receiving 
computer then must send exactly the same payload back to the sender. 

The affected versions of OpenSSL allocate a memory buffer for the message to be returned 
based on the length field in the requesting message, without regard to the actual size of that 
message's payload. Because of this failure to do proper bounds checking, the message 
returned consists of the payload, possibly followed by whatever else happened to be in the 
allocated memory buffer. 

Heartbleed is therefore exploited by sending a malformed heartbeat request with a small 
payload and large length field to the vulnerable party (usually a server) in order to elicit the 
victim's response, permitting attackers to read up to 64 kilobytes of the victim's memory that 
was likely to have been used previously by OpenSSL. Where a Heartbeat Request might ask a 
party to "send back the four-letter word 'bird'", resulting in a response of "bird", a "Heartbleed 



 

6 

Request" (a malicious heartbeat request) of "send back the 500-letter word 'bird'" would cause 
the victim to return "bird" followed by whatever 496 characters the victim happened to have in 
active memory. Attackers in this way could receive sensitive data, compromising the 
confidentiality of the victim's communications. Although an attacker has some control over the 
disclosed memory block's size, it has no control over its location, and therefore cannot choose 
what content is revealed 

A simple diagram below illustrates the Heartbleed vulnerability: 

 

 

Testing Methodologies & Product Options 

Through all of the vulnerabilities listed and detailed above, it has been widely debated that more 

robust testing and scrutiny of the code base on the front end, may very well have prevented a 

number of these issues – or at least exposed them earlier in the pre-release phase. In this 

course we spent a significant amount of time reviewing and articulating test methodologies. The 

trick, as with most things, is when and where to use such testing methods and modalities and 

how to apply them at the lowest overhead in term of both finance and personnel resources.  

As we look at testing mechanisms and tools, for purposes of this paper, I am going to reflect on 

some of the articles and reading materials to attempt to add context and specifics on a few 

testing methods and products: 

https://en.wikipedia.org/wiki/File:Simplified_Heartbleed_explanation.svg


 

7 

Bootstrapping Trust in Commodity Computers  

One example of an attestation model/approach is the Trusted boot vs. Secure boot via the use 

of TPM. In short some of the benefits of this model are outlined below: 

The two scenarios can be summarized as such: 

Trusted Boot Scenario 

– Measure system during boot for remote verification 

– Operating system is booted based on a measured system (integrity verifiable) 

– Enable verification of boot: 

– Base layer is immutable 
– The integrity of the base layer is measured 
– Transition to higher layer only occurs after valid measurement 

– Remote party can verify measurements to determine integrity 

Key Takeaways 

– Computer is not stopped if secure boot guarantee is violated 

– Provable to remote systems 

– Requires root of trust 

Secure Boot Scenario 

– Ensure only a secure system is booted 

– Operating system that is bootstrapped is based on a untampered foundation 

(integrity guarantee) 

– Initially not a problem, but nowadays field upgradable FLASH memory is used 

– Integrity of a layer can only be guaranteed if-and-only-if: 

– Base layer is immutable 

– The integrity of the base layer is verified 

– Transition to higher layer only occurs after valid verification 

Key Takeaways 

– Computer is stopped if secure boot guarantee is violated 

– Not provable to remote systems 

Access controls of a TPM solution such as: Storage Access Controls, Protected and TPM 
Sealed storage and remote access elements like TPM based attestation. This process can be 
defined as: During the protocol, the verifier supplies the attestor with a nonce to ensure 
freshness (i.e., to prevent replay of old attestations). The attestor then asks the TPM to 
generate a Quote. The Quote is a digital signature covering the verifier’s nonce and the current 
measurement aggregates stored in the TPM’s Platform Configuration Registers (PCRs). The 



 

8 

attestor then sends both the quote and an accumulated measurement list to the verifier. Some 
things practitioners should be aware of are the concerns of the platform state, Privacy, the roots 
of the Trust model, validation and day-to-day application and future implications of the model. 
 
Using TrustVisor to achieve efficient TCB Reduction and Attestation 
 
The implementation of TrustVisor on an AMD platform in an effort to achieve robust attestation. 
TrustVisor has three basic operating modes. Host mode refers to execution of TrustVisor code 
at the system’s highest privilege level. TrustVisor in turn supports two guest modes: legacy and 
secure. In legacy guest mode, a commodity x86 OS and its applications can execute without 
requiring any awareness of the presence of TrustVisor. The legacy OS manages all peripheral 
devices on the system (network, disk, display, USB, etc.), with the TPM as the only device 
shared between TrustVisor and the untrusted legacy OS. 
 
The fact that TrustVisor also incorporates two basic Trust computing mechanisms – 1.  The 
sealed storage mechanism and 2. Remote Attestation mechanism. The sealed storage 
mechanism can best be described as a mechanism in which a particular PAL can encrypt data 
along with a policy such that the resulting ciphertext can only be decrypted by the PAL specified 
in the policy. The remote attestation mechanism is described as a mechanism by which a 
remote party can be convinced that a particular PAL indeed ran on a particular platform 
(optionally with particular inputs and producing particular outputs) protected by TrustVisor. Both 
of these mechanisms are enabled by an integrity measurement process that maintains a set of 
measurements (cryptographic hashes) of all code in the TCB for a PAL of interest. 
 
The Implementation and evaluation of the TrustAdvisor hypervisor solution can greatly enhance 
code execution integrity. This system enforces code and execution integrity, and data secrecy 
and integrity for PALs. TrustVisor enables fine-grained attestations to the PAL’s execution. 
TrustVisor supports unmodified legacy OSes and their applications, so that only new 
applications developed with enhanced security properties require any awareness of TrustVisor. 
The significant security benefits of TrustVisor outweigh the performance costs, which will mostly 
vanish with improved hardware virtualization support. 
 
Design and Implementation of a TCG Based Integrity Measurement Architecture 
 

A trust measurement architecture to a web server application to illustrate how a TPM system 
can detect such items as rootkits and malware with limited impact to performance. This model in 
which a remote system (in this case the challenger system) has to prove to another system (in 
this case the attesting system) that it is of sufficient integrity to use. In this model the integrity 
measurement architecture is based on the following measurement systems: Verification Scope, 
Executable Content, Structured Data and Unstructured Data. 

Specific to the Design Architecture are 3 core components: They are as follows: 

 The Measurement Mechanism on the attested system determines what parts of the 
run-time environment to measure, when to measure, and how to securely maintain the 
measurements. 

 An Integrity Challenge Mechanism that allows authorized challengers to retrieve 
measurement lists of a computing platform and verify their freshness and completeness.  



 

9 

 An Integrity Validation Mechanism, validating that the measurement list is complete, 
non-tampered, and fresh as well as validating that all individual measurement entries of 
runtime components describe trustworthy code or configuration files. 

 
 
Flicker as a security validation tool 
 
The use of Flicker as a matter of ensuring a trusted security platform and secure execution of 
code in the CPU’s most privileged mode is yet another way to validate the security posture of a 
platform. Flicker is an architecture for isolating sensitive code execution using a minimal TCB 
(Trusted Computing Base). 
 
The Flicker implementation leverages TPM based attestation, TPM Sealed Storage concepts 
and TPM vs. Dynamic PCR’s which reinforces reading’s from the prior articles above. Late 
launch concepts are critical to establishing the need/relevance of Flicker as a solution. Flicker 
achieves its properties using the Late Launch capabilities of the base system. Instead of 
launching a VMM, Flicker pauses the current execution environment, executes a small snippet 
of code and then resumes operation of the previous environment. Flicker achieves this in 
isolated execution mode. After an extensive overview of how the SKINIT snippet of code works, 
the paper continues with the Developer’s perspective on how to build and execute a PAL. 
 
Specific application scenarios for use of Flicker such as SSH Password authentication – the 
primary goal in this scenario being, to prevent malicious code on the server from learning the 
user’s password, even if the server’s OS has been compromised. 
 
Ultimately, Flicker significantly improves the security and reliability of the code it executes and 
suggest that the implementation and use of Flicker-based applications could become a reality, 
which would greatly enhance onboard security of commodity computers. 
 

An Alternative to OpenSSL: LibreSSL 

LibreSSL is an open-source implementation of the Secure Sockets Layer (SSL) and Transport 
Layer Security (TLS) protocols. It was forked from the OpenSSL cryptographic software library 
in April 2014 as a response by OpenBSD developers to the Heartbleed security vulnerability in 
OpenSSL, with the aim of refactoring the OpenSSL code so as to provide a more secure 
implementation.  

LibreSSL was forked from the OpenSSL library starting with the 1.0.1g branch and will follow 
the security guidelines used elsewhere in the OpenBSD project. 

After the Heartbleed bug in OpenSSL, the OpenBSD team audited the code afresh, and quickly 
realised they would need to maintain a fork themselves.The libressl.org domain was registered 
on 11 April 2014; the project announced the name on 22 April 2014. 

In the first week of code pruning, more than 90,000 lines of C code were removed. Older or 
unused code has been removed, and support for some older or now-rare operating systems 
removed. LibreSSL was initially being developed as an intended replacement for OpenSSL in 
OpenBSD 5.6, and was then ported back to other platforms once a stripped-down version of the 



 

10 

library was stable. As of April 2014, the project was seeking a "stable commitment" of external 
funding.  

Many folks in secure coding circles have called into question the quality of the OpenSSL 
codebase and many believe that LibreSSL is a much more robust and secure solution because 
of some of the proactive development and testing methodologies and code practices that have 
been employed in its development. Although it is a fork of the original OpenSSL set, numerous 
changes have been incorporated and the code base is believed to be stronger.  

Vulnerabilities in LibreSSL as compared to OpenSSL are significantly reduced as illustrated by 
the tables below: 

Total vulnerabilities between the release of LibreSSL and the release of OpenSSL 1.0.2: 

Severity  LibreSSL  OpenSSL 

Critical  0  1 

High  3  6 

Moderate  9  14 

Low  6  21 

Total  18  42 

Since the release of OpenSSL 1.0.2 

Severity  LibreSSL OpenSSL 

 
 

 

1.0.1 1.0.2 1.1.0 

Critical  0 0 1 1 

High  0 2 7 3 

Medium  12 15 22 2 

Low  7 10 26 15 

Unclassified  2 0 0 

 

Total  21 27 35 

 

 

 



 

11 

CONCLUSION 

In conclusion, it is clear that robust code development and strong testing methodologies are 

clear paths to better code and better platforms. As Illustrated above in the charts that compare 

LibreSSL and OpenSSL, when proactive measures are put in place on the front end and proper 

testing and validation principles and techniques are layered into the process, the result is a far 

stronger offering. Some might contend that the adoption of LibreSSL as compared to the 

adoption of OpenSSL maybe one of the reasons for a discovery of less vulnerabilities, but it is 

clear to me from my research on the topic that alternative solutions like LibreSSL that have 

been developed with a security-by-design approach, are likely the longer term winners in the 

new era of heightened awareness of Cybersecurity. 

It is clear that OpenSSL may have been rushed to market to meet a minimum demand, but 

obviously the core developers of LibreSSL have given much thought on the front end of the 

design and architecture to ensure better outcomes for industry and adoption of such methods 

are on the rise and at the forefront of the discussion these days – which is a good thing for all of 

us in the fight (The good side of course). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

References 

 

 

https://en.wikipedia.org/wiki/LibreSSL 

https://en.wikipedia.org/wiki/Heartbleed 

http://heartbleed.com/ 

https://drownattack.com/ 

CVE-2016-0800 

CVE-2015-3197 

CVE-2016-0703 

https://en.wikipedia.org/wiki/LibreSSL
https://en.wikipedia.org/wiki/Heartbleed
http://heartbleed.com/
https://drownattack.com/
https://www.openssl.org/news/secadv/20160301.txt
https://www.openssl.org/news/secadv/20160128.txt
https://www.openssl.org/news/secadv/20160301.txt

